4 de marzo de 2015

Le estrella devorada

El caso de la estrella CW Leonis es muy particular. Esta estrella, con una masa cercana a dos veces la del Sol, parece ser que tiene una compañera la cual, dada su proximidad, estaría devorando la masa de CW Leonis, acelerando así su muerte estelar. Saber esto ha sido posible gracias a un estudio liderado por José Cernicharo, investigador del CSIC en el Grupo de Astrofísica Molecular del Instituto de Ciencia de Materiales de Madrid.

La estrella erosiva

La compañera actúa como un agente erosivo de la superficie de la estrella principal, hipótesis que explicaría la pérdida de masa. “Los datos observados muestran capas muy densas que parecen reflejar episodios recurrentes de pérdida de masa en la envoltura de la estrella”, explica Cernicharo.

Imagen 1: La línea de emisión del 13-CO (2-1) integrada entre las velocidades V(LSR) -28,5 y -25,5 Km/s (contorno negro) sobreimpresionada con la emisión del 12-CO en el mismo rango de velocidades. Astronomy & Astrophysics / J. Cernicharo et al.

Y es que las capas que se van desprendiendo del cuerpo de la estrella principal aparecen rotas en pedazos, mientras que las que están más próximas al cuerpo se muestran bastante esféricas.

Explicando la rotura

“Una forma de explicar estas roturas en las capas externas CW Leonis es que puede estar dejando la fase AGB", comenta Cernicharo. En la fase AGB (Rama Asintótica Gigante, por sus siglas en inglés) la estrella ya ha agotado el hidrógeno del núcleo y empieza a usar el helio como combustible, expandiéndose y expulsando al exterior sus capas más externas.

Imagen 2: Distribución de gas en para un tiempo de 10.000 años con las pérdidas de masa destacadas en períodos de 400 años (diagramas superiores) y en períodos de 800 años (diagramas medios) en comparación con la distribución de brillo observada en la línea del monóxido de carbono. Los datos del modelo han sido convolucionados con la gaussiana de anchura igual a la HPBW (Ancho de Haz de Media Potencia) del telescopio. Los paneles de la izquierda muestran la distribución del gas para las velocidades. Créditos: Astronomy & Astrophysics / J. Cernicharo et al.

“Todas esas características clave que se dan en esta estrella, y en especial las roturas de las capas exteriores, pueden explicarse con la presencia de una estrella compañera, que pasaría cerca de CW Leonis cada 800 años, aumentando el ritmo de pérdida de masa cuando se acerca”, explica Cernicharo. El hecho de que las estrellas binarias sean comunes refuerza la hipótesis, sin embargo, al estar rodeada de polvo y gas resulta más complicado confirmar el sistema doble.

Los datos, obtenidos con el telescopio IRAM 30m del Institut de Radioastronomie Milimetrique instalado en el Pico Veleta de Sierra Nevada, en Granada, han permitido realizar mapas de emisión de la molécula de monóxido de carbono (CO), mostrando la historia de la pérdida de masa de CW Leonis en los últimos 8.000 años.

Imagen 3: Distribución de la emisión de monóxido de carbono a diferentes velocidades. Créditos: Astronomy & Astrophysics / J. Cernicharo et al.

CW Leonis es un objeto de estudio con un gran interés. Además de su velocidad constante de expansión, Cernicharo destaca que "la mitad de las especies interestelares conocidas se observan en su envoltura exterior. En este ambiente rico en carbono, la presencia de moléculas con oxígeno, como el vapor de agua, constituye aún uno de los más apasionantes enigmas por resolver”.

Imagen 4: Arriba a la izquierda se muestra la velocidad integrada de la línea de emisión del monóxido de carbono (J=2-1). En el resto de diagramas se muestran los mapas de velocidad con una resolución de 2 Km/s. Créditos: Astronomy & Astrophysics / J. Cernicharo et al.

La sensibilidad de los instrumentos aumenta con el tiempo y cada vez es más efectiva la detección de moléculas en el espacio. Moléculas de complejidad media están a las puertas de ser descubiertas.
Los datos de la investigación han sido publicados en la revista Astronomy & Astrophysics bajo el título "Molecular shells in IRC+10216: tracing the mass loss history", por J. Cernicharo et al.

El equipo que ha llevado a cabo la investigación está formado por J. Cernicharo (Grupo de Astrofísica Molecular del Instituto de Ciencia de Materiales del CSIC), N. Marcelino (National Radioastronomy Observatory, Estados Unidos), M. Agúndez (Grupo de Astrofísica Molecular del Instituto de Ciencia de Materiales del CSIC), M. Guelin (Institut de Radioastronomie Milimetrique, Francia; LERMA/Observatoire de Paris, Francia).
Artículo científico:

Referencias:

--
¿Te interesa? Sígueme también en Twitter.

National Geographic Oferta

2 de marzo de 2015

Una galaxia adelantada a su época

Tras suceder el Big Bang, hace unos 13.700 millones de años (año arriba, año abajo), el universo era oscuro. Al contrario de lo que puede parecer, el Big Bang no brilló porque era tanta la cantidad de materia y tan reducido el universo de aquel entonces que los fotones, esas partículas que forman la luz, no podían desplazarse. Todo eran tinieblas.

Pasada esa época oscura existió una época denominada "período de reionización" donde las primeras estrellas iluminaron el universo. Y de esa época es de donde procede la débil luz de la galaxia A1689-zD1: 700 millones de años después del Big Bang, lo que en Cosmología corresponde a un desplazamiento al rojo con valor z=7,5.

Imagen 1: Vista infrarroja de la lejana galaxia polvorienta A1689-zD1. Créditos: ESO / J. Richard.

Debido a ello, el equipo de astrónomos, liderado por Darach Watson de la Universidad de Copenhague (Dinamarca), esperaba una apariencia de galaxia recién formada, muy poco evolucionada.

Visión no directa

El grupo de astrónomos no observó la galaxia A1689-zD1 de manera directa, sino que lo hizo a través de una lente gravitatoria provocada por el cúmulo de galaxias Abell 1689 que aumenta el brillo de la débil galaxia en más de 9 veces.

En sus observaciones utilizaron el instrumento X-shooter instalado en el VLT (Very Large Telescope) y contrastaron los datos obtenidos con los aportados por el conjunto de radiotelescopios ALMA (Atacama Large Millimeter/submillimeter Array) de esa misma región.

Y ahí llegó la sorpresa: el estado evolutivo de la galaxia era mucho más avanzado de lo esperado.

No sería justo obviar el dato de que el telescopio espacial Hubble ya observó esta galaxia en febrero de 2008, pero no obtuvo resultados relevantes porque sus instrumentos no tenían la suficiente sensibilidad.

Imagen 2: Posición de la galaxia A1689-zD1 con respecto al cúmulo galáctico Abell 1689 observados por el telescopio espacial Hubble. Créditos: NASA / ESA / L. Bradley (Johns Hopkins University) / R. Bouwens (University of California en Santa Cruz) / H. Ford (Johns Hopkins University) / G. Illingworth (University of California en Santa Cruz).

Dilema evolutivo

La galaxia sorprendió por su rica complejidad química y su abundante polvo interestelar, del orden de la que puede encontrarse en una galaxia mucho más evolucionada.

Imagen 3: Visión de amplio campo del cielo que rodea al rico cúmulo de galaxias Abell 1689. Créditos: ESO / Digitized Sky Survey 2.

A esta edad se supone que la galaxia A1689-zD1 debía tener pocos elementos químicos pesados, esto es, elemenos más pesados que el helio, lo que en Astrofísica se conoce como metales.

Generación a generación

Y es lógico pensar que apenas hubiera metales porque estos se producen en el interior de las estrellas y se dispersan cuando las estrellas estallan como supernovas o dejan sus restos en las nebulosas planetarias.

Transcurridas varias generaciones de estrellas es cuando tendremos una gran abundancia de estos elementos como el carbono, el oxígeno o el hierro. Y dado que la galaxia A1689-zD1 es tan joven, no debería haber dado tiempo a generar tal cantidad de elementos pesados.

Imagen 4: Suma acumulativa del espectro sin binning. Los brazos del VIS y NIR se representan en azul y rojo, respectivamente. Las lagunas en el espectro acumulativo son debidas a la eliminación de las regiones afectadas por la fuerte absorción. Créditos: Nature / D. Watson et al.

Todavía no se responde todo

Pero la galaxia parecía estar emitiendo una gran cantidad de radiación en el infrarrojo lejano, indicando que ya había producido muchas de sus estrellas y cantidades significativas de metales, revelando también que su relación polvo-gas era similar a la de galaxias mucho más evolucionadas.

 Imagen 5: Comparativa de la región observada con varios filtros. Créditos: Nature / D. Watson et al.

"Aunque el origen del polvo galáctico sigue siendo un misterio, nuestros resultados indican que su producción es muy rápida, en un margen de 500 millones años desde el comienzo de la formación de estrellas en el universo. En términos cosmológicos, es un plazo muy corto, dado que la mayoría de las estrellas viven miles de millones de años", explica Watson.

Con estos nuevos resultados hemos sabido que el universo temprano funciona de una forma muy diferente a lo que suponíamos. Gracias a la nueva tecnología podemos observar cada vez mejor estos fenómenos que nos ayudan a comprender mejor todo lo que nos rodea, por muy lejos que esté.
Este trabajo de investigación se ha publicado el 2 de marzo de 2015 en la revista Nature bajo el título “A dusty, normal galaxy in the epoch of reionization”, por D. Watson et al.

El equipo que ha llevado a cabo la investigación está formado por D. Watson (Niels Bohr Institute/University of Copenhagen, Dinamarca), L. Christensen (University of Copenhagen, Dinamarca), K. K. Knudsen (Chalmers University of Technology, Suecia), J. Richard (CRAL/Observatoire de Lyon, Francia), A. Gallazzi (INAF-Osservatorio Astrofisico di Arcetri, Italia) and M. J. Michalowski (SUPA/Institute for Astronomy/University of Edinburgh/Royal Observatory, Reino Unido).
La imagen 2 fue tomada por el instrumento ACS (Advanced Camera for Surveys) instalado en el telescopio espacial Hubble con los siguientes filtros:
- Filtro Óptico en banda B (475 nm)
- Filtro Óptico en banda R (625 nm)
- Filtro Infrarrojo en banda Z (850 nm)

Artículo científico:

Referencias:

--
¿Te interesa? Sígueme también en Twitter.

National Geographic Oferta

27 de febrero de 2015

Sorpresa en Ceres

Ya se pueden contar con los dedos de las manos los días que faltan para que Dawn realice la inserción orbital en Ceres. Será el próximo 6 de marzo.

Pero antes de llegar, Ceres nos ha dado una sorpresa más y sigue confundiendo a los científicos ya que las últimas imágenes de Ceres tomadas el 19 de febrero a tan solo a 46.000 kilometros, revelan que no un punto brillante sino dos destacan en su superficie.
Imagen 1: El punto más brillante en Ceres tiene un compañero menos brillante. Créditos: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.

"El punto brillante de Ceres parece tener un compañero de menor brillo. Podría indicar un origen volcánico del lugar, pero tendremos que esperar a tener una mejor resolución antes de confirmar tales interpretaciones geológicas", explica Chris Russell, investigador principal de la misión Dawn en la UCLA (Universidad de California en Los Angeles).

¿Habrá más sorpresas antes de la inserción? Nunca se sabe... Puede que sí, o puede que no (pero yo creo que sí).

Referencias:
- 'Bright Spot' on Ceres Has Dimmer Companion NASA's


--
¿Te interesa? Sígueme también en Twitter.

National Geographic Oferta

26 de febrero de 2015

El campo profundo de MUSE

Cuando un telescopio toma una imagen de muy alta exposición decimos que se ha captado una imagen de campo profundo, siendo las más famosas las del telescopio espacial Hubble (NASA/ESA), denominadas HDF (Hubble Deep Field), HDF-S (Hubble Deep Field South) y HUDF (Hubble Ultre-Deep Field), traducidas como Campo Profundo del Hubble, Campo Profundo Austral del Hubble y Campo Ultra-Profundo del Hubble.

Imagen 1: Campo Ultra Profundo del Hubble en alta resolución donde las galaxias más pequeñas y más rojas, aproximadamente 100, son algunas de las galaxias más lejanas que pueden verse con un telescopio óptico, y ya existían cuando el universo sólo tenía 800 millones de años. Créditos: NASA/ESA/S. Beckwith (STScI)/HUDF Team.

El primero de estos campos profundos, el HDF, se tomó en 1995 y transformó nuestra comprensión del universo joven. Dos años más tarde se tomó el HDF-S, y entre septiembre de 2003 y enero de 2004 se obtuvo el HUDF.

Más preguntas

Además de respuestas, con los campos profundos del Hubble llegaron más preguntas en lo referente a las galaxias observadas y, para responderlas, los astrónomos observaron cada una de ellas con otros instrumentos en un trabajo tan tedioso como complicado.

Pero la tecnología avanza y ya contamos con el instrumento MUSE (Multi Unit Spectroscopic Explorer) instalado en el VLT (Very Large Telescope) que ha hecho las dos cosas a la vez: observar galaxias y analizarlas mucho más rápidamente.

Observando los campos profundos

Tras su puesta a punto en el VLT en 2014, MUSE se propuso observar el HDF-S y los resultados superaron las expectativas. "Después de tan sólo unas horas de observaciones en el telescopio, echamos un vistazo a los datos y vimos muchas galaxias, fue muy alentador", explica Roland Bacon del Centre de Recherche Astrophysique de Lyon (Francia), investigador principal del instrumento MUSE.

Imagen 2: Mapa de la localización del HDF-S, situado en la constelación del Tucán. Créditos: ESO/IAU/Sky & Telescope.

Sensibilidad y mucha información

En cada píxel de las imágenes de MUSE, además de "lo que vemos" también nos aporta información de unos 90.000 espectros donde cada uno abarca un rango desde el azul hasta el infrarrojo cercano (375 - 930 nm) que nos pueden revelar distancias, composición, movimientos internos...

También hay que destacar su sensibilidad, ya que en un tiempo de exposición de 27 horas, se encontraron más de 20 objetos que el Hubble no había detectado en las 240 horas de exposición empleadas para captar el HDF-S.

Imagen 3: Campo Profundo Austral del Hubble donde se remarcan dos ejemplos captados por MUSE que eran invisibles para el Hubble. Crédito: ESO/MUSE Consortium/R. Bacon.

"La emoción más grande vino cuando encontramos galaxias muy lejanas que no eran visibles ni siquiera en la imagen más profunda del Hubble. Después de tantos años de duro trabajo con el instrumento, para mí fue una experiencia muy intensa poder ver cómo nuestros sueños se hacían realidad", añade Bacon.

Gracias a los datos de MUSE, se pudieron medir las distancias de 189 galaxias. Unas de ellas, cercanas; otras datan de cuando el universo tenía menos de mil millones de años. En las más cercanas MUSE puede detectar las diferentes propiedades de diferentes zonas de la misma galaxia, como por ejemplo datos del giro de la galaxia y cómo sus propiedades varían de un lugar a otro.

Imagen 4: Análisis de los objetos y sus distancias medidas con MUSE. Los símbolos en forma de estrellas blancas marcan estrellas débiles en la Vía Láctea. Todo lo demás son galaxias lejanas. Los círculos señalan objetos que aparecen en las imágenes de este campo obtenidas por el Hubble mientras que los triángulos marcan los más de 25 nuevos descubrimientos proporcionados por los datos de MUSE que no pueden verse en la imagen del Hubble. Los objetos azules están relativamente cerca, los verdes y amarillos están más lejos y las galaxias púrpuras y rosadas se ven cuando el universo tenía menos de mil millones de años. Créditos: ESO/MUSE consortium/R. Bacon.

"Ahora que hemos demostrado las capacidades de MUSE para explorar el universo, vamos a mirar otros campos profundos [...] Podremos estudiar miles de galaxias y descubrir nuevas galaxias extremadamente débiles y distantes", concluye Bacon consciente de que se ha abierto una puerta para la comprensión de las galaxias que nos rodean.
Este trabajo de investigación se ha publicado el 26 de febrero de 2015 en la revista Astronomy & Astrophysics bajo el titulo “The MUSE 3D view of the Hubble Deep Field South”, por R. Bacon et al.
El equipo que ha llevado a cabo la investigación está formado por R. Bacon (Observatoire de Lyon/Université Lyon, Francia), J. Brinchmann (Leiden Observatory/Leiden University, Holanda), J. Richard (Observatoire de Lyon/Université Lyon, Francia), T. Contini (Institut de Recherche en Astrophysique et Planétologie/CNRS, Francia; Université de Toulouse, Francia), A. Drake (Observatoire de Lyon/Université Lyon, Francia), M. Franx (Leiden Observatory/Leiden University, Holanda), S. Tacchella (ETH Zurich/Institute of Astronomy, Suiza), J. Vernet (ESO, Alemania), L. Wisotzki (Leibniz-Institut für Astrophysik Potsdam, Alemania), J. Blaizot (Observatoire de Lyon/Université Lyon, Francia), N. Bouché (Université de Toulouse, Francia), R. Bouwens (Leiden Observatory/Leiden University, Holanda), S. Cantalupo (ETH Zurich/Institute of Astronomy, Suiza), C.M. Carollo (ETH Zurich/Institute of Astronomy, Suiza), D. Carton (Leiden Observatory/Leiden University, Holanda), J. Caruana (Leibniz-Institut für Astrophysik Potsdam, Alemania), B. Clément (Observatoire de Lyon/Université Lyon, Francia), S. Dreizler (Institut für Astrophysik/Universität Göttingen, Alemania), B. Epinat (Université de Toulouse, Francia; Laboratoire d’Astrophysique de Marseille, Francia), B. Guiderdoni (Observatoire de Lyon/Université Lyon, Francia), C. Herenz (Leibniz-Institut für Astrophysik Potsdam, Alemania), T.-O. Husser (Institut für Astrophysik/Universität Göttingen, Alemania), S. Kamann (Institut für Astrophysik/Universität Göttingen, Alemania), J. Kerutt (Leibniz-Institut für Astrophysik Potsdam, Alemania), W. Kollatschny (Institut für Astrophysik/Universität Göttingen, Alemania), D. Krajnovic (Leibniz-Institut für Astrophysik Potsdam, Alemania), S. Lilly (ETH Zurich/Institute of Astronomy, Suiza), T. Martinsson (Leiden Observatory/Leiden University, Holanda), L. Michel-Dansac (Observatoire de Lyon/Université Lyon, Francia), V. Patricio (Observatoire de Lyon/Université Lyon, Francia), J. Schaye (Leiden Observatory/Leiden University, Holanda), M. Shirazi (ETH Zurich/Institute of Astronomy, Suiza), K. Soto (ETH Zurich/Institute of Astronomy, Suiza), G. Soucail (Université de Toulouse, Francia), M. Steinmetz (Leibniz-Institut für Astrophysik Potsdam, Alemania), T. Urrutia (Leibniz-Institut für Astrophysik Potsdam, Alemania), P. Weilbacher (Leibniz-Institut für Astrophysik Potsdam, Alemania) y T. de Zeeuw (ESO, Alemania; Leiden Observatory/Leiden University, Holanda).
La imagen 1 fue tomada por el instrumento WFPC2 (Wide-Field Planetary Camera 2), instalado en el telescopio espacial Hubble, con los siguientes filtros:
- Filtro Óptico F450W (450 nm)
- Filtro Óptico F606W (606 nm)
- Filtro Óptico F814W (814 nm)


Artículo científico:

Referencias:

--
¿Te interesa? Sígueme también en Twitter.
National Geographic Oferta