8 de abril de 2015

Cianuro para la vida

Imaginad por un momento que los océanos de nuestro planeta contuvieran cianuro en lugar de agua, concretamente cianuro de metilo (CH3CN). ¿Y esto a qué viene? Resulta que un equipo de investigadores liderado por Karin Öberg, astrónoma del Centro Harvard-Smithsonian de Astrofísica de Cambridge (Estados Unidos), ha usado ALMA (Atacama Large Millimeter/submillimeter Array) revelando que el disco protoplanetario de una estrella joven contiene grandes cantidades de este cianuro de metilo.

Imagen 1: Impresión artística del disco protoplanetario que rodea la estrella MWC 480. Créditos: B. Saxton (NRAO/AUI/NSF).

La joven estrella, llamada MWC 480, está situada a 455 años luz en dirección a la constelación de Tauro. Tiene una edad de un millón de años, lo que quiere decir que está recién nacida si la comparamos con los 4.600 millones de años de edad de nuestro Sol. Además de cianuro de metilo, en el disco protoplanetario también encontraron un pariente más simple de esta molécula: el ácido cianhídrico (HCN).

El Cinturón de Kuiper

Estas dos moléculas fueron encontradas en la zona equivalente al Cinturón de Kuiper de nuestro sistema solar, esto es, en las frías y remotas regiones donde residen la mayor parte de los cometas. "Los estudios de cometas y asteroides muestran que la nebulosa solar que generó al Sol y los planetas era rica en agua y compuestos orgánicos complejos y ahora tenemos aún más evidencias de que esta misma química existe en otras partes del universo", explica Öberg.

Imagen 2: Gran campo que muestra el entorno en el que se encuentra la estrella MWC 480. Créditos: ESO/Digitized Sky Survey 2.

No deja de ser interesante que estas dos moléculas halladas en MWC 480 también se encuentren en los cometas de nuestro sistema solar en las mismas proporciones. Además, ALMA y otros telescopios han detectado en este disco signos evidentes de formación planetaria. A nivel astrobiológico cabe destacar que los cianuros, y concretamente el cianuro de metilo, contienen enlaces carbono-nitrógeno esenciales para la formación de aminoácidos, base de las proteínas y que sin ellas, la vida no existiría tal y como la conocemos.

Fábricas de moléculas orgánicas

Y ahora, gracias a esta investigación se ha comprobado que estas moléculas no sólo sobreviven, sino que prosperan, algo que no se habría demostrado hasta ahora. Y ahí no queda la cosa, porque se ha demostrado que estas moléculas son mucho más abundantes que las halladas en las nubes interestelares, revelando que los discos protoplanetarios son muy eficientes en la formación de moléculas orgánicas complejas y que son capaces de formarlas en escalas de tiempo relativamente cortas.
"Ahora sabemos que tampoco somos únicos en cuanto a nuestra química orgánica. Una vez más, hemos aprendido que no somos especiales" (Karin Öberg)
Por tanto, y a modo de conclusión, estas moléculas de encuentran en una futura zona de presencia cometaria. En algún momento estos cometas con presencia de estas moléculas impactarán sobre los planetas impregnándolos de la química del carbono-hidrógeno, enriqueciendo el entorno y, como bien dice Öberg, "desde el punto de vista de la vida en el universo, es una buena noticia".
Esta investigación se ha presentado en la revista Nature bajo el título “The Cometary Composition of a Protoplanetary Disk as Revealed by Complex Cyanides”, por K.I. Öberg et al.

El equipo que ha llevado a cabo la investigación está formado por Karin I. Öberg (Harvard-Smithsonian Centre for Astrophysics, Estados Unidos), Viviana V. Guzmán (Harvard-Smithsonian Centre for Astrophysics, Estados Unidos), Kenji Furuya (Leiden Observatory/Leiden University, Holanda), Chunhua Qi (Harvard-Smithsonian Centre for Astrophysics, Estados Unidos), Yuri Aikawa (Kobe University, Japón), Sean M. Andrews (Harvard-Smithsonian Centre for Astrophysics, Estados Unidos), Ryan Loomis (Harvard-Smithsonian Centre for Astrophysics, Estados Unidos) y David J. Wilner (Harvard-Smithsonian Centre for Astrophysics, Estados Unidos).
Artículo científico:

Referencias:

--
¿Te interesa? Sígueme también en Twitter.

National Geographic Oferta

7 de abril de 2015

Primer mes de Dawn en Ceres

Ya ha pasado un mes desde que la gravedad del planeta enano Ceres capturase a la sonda Dawn. Ahora, el empuje de sus motores junto al poder gravitatorio del pequeño cuerpo está guiando la sonda en una órbita circular. Además, todos los sistemas e instrumentos de Dawn se encuentran en un excelente estado de salud.
Imagen 1: Ceres observado el pasado 19 de febrero por la sonda Dawn. Créditos: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.

Pronto volveremos a tener imágenes de Ceres. Serán tomadas el 10 y el 14 de abril, quedando disponibles una vez se les haya realizado un análisis inicial. En la primera tanda podremos ver al planeta enano como una media luna delgada, mientras que en la segunda se revelará como una media luna un poco más grande y con mayor detalle. Tras el 14 de abril, habrá que esperar hasta el 23 de este mismo mes, que será cuando Dawn comience su primera campaña intensiva de ciencia.
Imagen 2: Concepción artística de la sonda Dawn. Créditos: NASA/JPL.

Y ya en mayo, concretamente a principios de mes, será cuando mejore nuestra visión de la superficie de Ceres, incluyendo esos desconcertantes puntos brillantes. Esas imágenes deberían ayudar a determinar su naturaleza.
National Geographic Oferta

27 de marzo de 2015

La materia oscura, acorralada

Hablar de materia oscura materia siempre resulta curioso y atractivo porque es un interrogante en nuestro conocimiento del universo. De hecho, se trata de uno de los mayores interrogantes ya que existe más materia oscura que materia ordinaria. Lo que ocurre es que es extremadamente difícil de alcanzar ya que no refleja la luz, tampoco la absorbe ni la emite. A todos los efectos es invisible para nuestros instrumentos. Sabemos que existe de un modo indirecto a través de sus efectos gravitacionales sobre el universo visible.

Para saber más sobre este misterioso tipo de materia, los investigadores la estudian de un modo similar a como lo harían si se tratara de materia ordinaria en el sentido de ver cómo se comporta frente a obstáculos del mismo modo que estudian las partículas subatómicas en los grandes aceleradores.

Imagen 1: Collage del telescopio espacial Hubble (NASA/ESA) de seis cúmulos de galaxias diferentes observados para analizar sus colisiones con el fin de apreciar el comportamiento de la materia oscura. El equipo fue capaz de mapear la distribución posterior a la colisión de estrellas y también de la materia oscura (en azul). Los cúmulos mostrados, de izquierda a derecha y de arriba a abajo son: MACS J0416.1–2403, MACS J0152.5-2852, MACS J0717.5+3745, Abell 370, Abell 2744 and ZwCl 1358+62. Créditos: NASA, ESA, D. Harvey, R. Massey, The Hubble SM4 ERO Team, ST-ECF, ESO, D. Coe, J. Merten, HST Frontier Fields, Harald Ebeling, Jean-Paul Kneib y Johan Richard.

Para tener un amplio abanico de muestras experimentales, los investigadores buscan estas colisiones en grandes cúmulos de galaxias, por supuesto a una escala mucho mayor de las que suceden en los aceleradores. En estas grandes colisiones la materia oscura se ve involucrada y pueden apreciarse sus efectos.

Los ingredientes

Las galaxias están formadas por tres ingredientes principales: nubes de gas y polvo, estrellas, y materia oscura. Durante las colisiones, las nubes de gas y polvo se difunden a lo largo de las galaxias involucradas en el choque ralentizándolas o incluso deteniéndolas. Las estrellas sin embargo están mucho menos afectadas por estas nubes, apenas sufriendo cambios en su velocidad.

"Sabemos cómo el gas y las estrellas reaccionan a estos choques cósmicos. La comparación de cómo la materia oscura se comporta nos puede ayudar a comprender lo que realmente es", explica David Harvey, de la Escuela Politécnica Federal de Lausana (Suiza), autor principal de un nuevo estudio que analiza estos choques.
Imagen 2: Collage del telescopio espacial Hubble (NASA/ESA) y del obsrevatorio de rayos X Chandra de seis cúmulos de galaxias diferentes observados para analizar sus colisiones con el fin de apreciar el comportamiento de la materia oscura. El equipo fue capaz de mapear la distribución posterior a la colisión de estrellas y también de la materia oscura (en azul) y la emision en rayos X (en rosa). Los cúmulos mostrados, de izquierda a derecha y de arriba a abajo son: MACS J0416.1-2403, MACS J0152.5-2852, MACS J0717.5 + 3745, Abell 370, Abell 2744, y ZwCl 1358 + 62. Créditos: NASA/ESA/STScI/CXC, D. Harvey, R. Massey, T. Kitching, A. Taylor y E. Tittley.

Harvey y su equipo utilizaron datos del telescopio espacial Hubble (NASA/ESA) y del observatorio de rayos X Chandra (NASA) para estudiar 72 grandes colisiones de cúmulos galácticos. Los choques, ocurridos en diferentes momentos, han sido vistos desde diferentes ángulos.

Para saber dónde se encuentra la materia oscura en el cúmulo, los investigadores estudiaron la luz de galaxias situadas detrás del cúmulo cuya luz se ha visto magnificada y distorsionada mediante la lente gravitacional formada por los componentes de la colisión. Debido a que tienen una buena idea de la masa visible del cúmulo, la cantidad que la luz se distorsiona les dice cuánta materia oscura hay en una región determinada.

El resultado

El equipo encontró que, al igual que las estrellas, la materia oscura continuó su trayectoria sin apenas ralentizarse por efectos de las nubes de gas y polvo. Y aquí viene un dato importante: La razón por la que la materia oscura no se ralentiza es porque no sólo no interactúa con partículas visibles, sino que tampoco lo hace con otra materia oscura. Y esta pregunta es cosecha propia: ¿Quiere esto decir que existen varios tipos de materia oscura?

"Un estudio previo había observado un comportamiento similar en el cúmulo de la Bala", comenta Richard Massey, miembro del equipo en la Universidad de Durham (Reino Unido). "Es difícil interpretar lo que estás viendo cuando sólo tienes un ejemplo. Cada colisión necesita cientos de millones de años, por lo que en una vida humana sólo se llega a ver una imagen fija desde un solo ángulo. Ahora que tenemos muchas más colisiones podemos empezar a reconstruir la película completa y entender mejor lo que está pasando", añade.

Acorralada

Al observar que la materia oscura interactúa consigo misma todavía menos lo que se pensaba, el equipo ha "acorralado" con éxito las propiedades de la materia oscura. Los teóricos de la física de partículas seguirán buscando, pero ya tienen un menor número de incógnitas para trabajar en sus modelos. Es aquí donde las teorías de la supersimetría del modelo estándar y la materia oscura van de la mano.
Imagen 3: Configuraciones observadas en 30 sistemas estudiados. Las curvas de nivel muestran la distribución de las galaxias (verde), las nubes de gas (rojo) y la masa total, dominada por la materia oscura (azul). Créditos: Science/D. Harvey et al.

La materia oscura podría, potencialmente, tener propiedades que darían pie a estudiar nuevos tipos de interacción como la que evita que la materia oscura se frene en las colisiones. Otras posibles interacciones podrían hacer que las partículas de materia oscura rebotasen entre ellas como bolas de billar provocando que salgan fuera de las colisiones y, de esta forma, no verse afectadas. Son aspectos que se estudiarán en próximas investigaciones.

"El juego no ha terminado, pero estamos cada vez más cerca de obtener una respuesta", argumenta Harvey . "Estos grandes colisionadores de partículas nos están dejando entrever el oscuro mundo de nuestro alrededor", concluye. Así que, con todo esto, parece ser que la materia oscura es cada vez menos oscura...
La investigación ha sido publicada en la revista Science bajo el título "The non-gravitational interactions of dark matter in colliding galaxy clusters", por D. Harvey et al.
El equipo que ha llevado a cabo la investigación está formado por D. Harvey (École Polytechnique Fédérale de Lausanne, Suiza; University of Edinburgh, Reino Unido), R. Massey (Durham University, Reino Unido), T. Kitching (University College London, Reino Unido), A. Taylor (University of Edinburgh, Reino Unido) y E. Tittley (University of Edinburgh, Reino Unido).

La imagen 1 es una composición obtenida a partir de imágenes proporcionadas por los instrumentos ACS (Advanced Camera for Surveys) y WFC3 (Wide Field Camera 3) a bordo del telescopio espacial Hubble y por el instrumento FORS1 (Focal Reducer and low dispersion Spectrograph) del VLT (Very Large Telescope) en los siguientes filtros:
- Filtro Óptico en banda B (435 mm) del ACS/Hubble.
- Filtro Óptico en banda R (625 nm) del ACS/Hubble.
- Filtro Infrarrojo en banda I (814 nm) del ACS/Hubble.
- Filtro Óptico en banda V () del FORS1/VLT.
- Filtro Óptico en banda R () del FORS1/VLT.
- Filtro Infrarrojo en banda R () del FORS1/VLT.
- Filtro Infrarrojo en banda Y (1,1 um) del WFC3/Hubble.
- Filtro Infrarrojo en banda J (1,4 um) del WFC3/Hubble.
- Filtro Óptico en banda R (606 nm) del ACS/Hubble.
- Filtro Infrarrojo en banda I (814 nm) del WFC3/Hubble.
- Filtro Óptico en banda G (606 nm) del ACS/Hubble.
- Filtro Óptico en banda V (606 nm) del ACS/Hubble.
- Filtros Ópticos en bandas V+I del ACS/Hubble.
- Filtro Óptico en banda I (814 nm) del ACS/Hubble.

La imagen 2 es una composición obtenida a partir de imágenes proporcionadas por los instrumentos ACS (Advanced Camera for Surveys) y WFC3 (Wide Field Camera 3) a bordo del telescopio espacial Hubble, por el instrumento FORS1 (Focal Reducer and low dispersion Spectrograph) del VLT (Very Large Telescope) y por el observatorio de rayos X Chandra, en los siguientes filtros:
- Filtro Óptico en banda B (435 mm) del ACS/Hubble.
- Filtro Óptico en banda R (625 nm) del ACS/Hubble.
- Filtro Infrarrojo en banda I (814 nm) del ACS/Hubble.
- Filtro Óptico en banda V () del FORS1/VLT.
- Filtro Óptico en banda R () del FORS1/VLT.
- Filtro Infrarrojo en banda R () del FORS1/VLT.
- Filtro Infrarrojo en banda Y (1,1 um) del WFC3/Hubble.
- Filtro Infrarrojo en banda J (1,4 um) del WFC3/Hubble.
- Filtro Óptico en banda R (606 nm) del ACS/Hubble.
- Filtro Infrarrojo en banda I (814 nm) del WFC3/Hubble.
- Filtro Óptico en banda G (606 nm) del ACS/Hubble.
- Filtro Óptico en banda V (606 nm) del ACS/Hubble.
- Filtros Ópticos en bandas V+I del ACS/Hubble.
- Filtro Óptico en banda I (814 nm) del ACS/Hubble.
- Filtro en banda de rayos X del Chandra.


--
¿Te interesa? Sígueme también en Twitter.

National Geographic Oferta

26 de marzo de 2015

La nube que se acercó demasiado al agujero negro

Parece ser que los agujeros negros supermasivos en el centro de las galaxias son algo normal, y nuestra galaxia no es menos: también lo tiene. Su masa viene siendo equivalente a unos cuatro millones de veces la del Sol, y junto a este monstruo estelar hay en órbita un pequeño grupo de estrellas brillantes cuya trayectoria ha sido ampliamente estudiada.

Además de este conjunto estelar, junto al agujero negro también se ha estudiado una enigmática nube de polvo conocida como G2, cuya trayectoria predecía que iba a acercarse "demasiado" a este devorador de materia. Su punto más cercano, o peribothron, tendría lugar en mayo de 2014.
Imagen 1: Trayectoria de la nube G2 tanto antes como después de pasar por las cercanías del agujero negro. Créditos: ESO/A. Eckart.

¿Destrozará la nube?

Al llegar a ese punto se esperaba que las fuerzas de marea destrozasen la nube yendo parte del material hacia el agujero negro provocando una combustión que desencadenaría una serie de eventos, señales inequívocas de que el agujero se estaba poniendo las botas. Varios telescopios de todo el mundo pusieron su mirada en esta región para observar este evento único, crónica anunciada de la muerte de la nube.

Un equipo liderado por Andreas Eckart, de la Universidad de Colonia (Alemania) observó la región durante años con el VLT (Very Large Telescope) de ESO. Y han sido observaciones muy complejas porque la región se esconde tras densas nubes de polvo, requiriendo observaciones en el infrarrojo. Además, la proximidad al agujero negro hacía necesario el uso de óptica adaptativa para conseguir imágenes precisas.
Imagen 2: Conjunto de estrellas que orbitan el agujero negro supermasivo de la galaxia. Créditos: ESO/S. Gillessen et al.

Mediante los instrumentos SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared) y NACO (Nasmyth Adaptive Optics System / Near-Infrared Imager and Spectrograph) hicieron posible estas observaciones. El equipo utilizó el instrumento SINFONI, instalado en el VLT, y también monitorizaron en luz polarizada el comportamiento de la región del agujero negro central utilizando el instrumento NACO, también en el VLT.

Sorpresa en la nube

Sorprendentemente las imágenes mostraron una nube compacta tanto antes como después del peribothron, y por tanto sobreviviendo contra todo pronóstico a su acercamiento al agujero negro.

Con SINFONI pudieron dividir la luz en colores dentro del infrarrojo permitiendo estimar la velocidad de la nube mediante el efecto Doppler ya que la nube se alejaba de nosotros antes de pivotar sobre el agujero negro para acercarse tras el paso por su máximo acercamiento, pasando su velocidad de 10 a 12 millones de Km/h.
Imagen 3: Mapas en banda Brγ. Los gráficos muestra una superficie cuadrada 1 segundo de arco de lado de la región del centro galáctico en la época Febrero-Abril de 2014. La cruz marca la posición de SgrA*. La línea verde corresponde a la órbita elíptica de la nube. Las líneas de contorno representan los miembros más brillantes del cúmulo de estrellas. Paneles superiores: desplazamiento al rojo en la línea del Brγ DSO. Izquierda: emisión integrada en el rango de 120 Å en torno a 2,185 μm tras restar el fondo de cada píxel espacial del campo de visión. Derecha: Misma información que el panel de la izquierda pero mostranto únicamente la información que es más del doble de brillante que el nivel de ruido. Paneles inferiores: Desplazamiento al azul en la línea del Brγ. Izquierda: emisión integrada en el rango de 120 Å en torno a 2,147 μm, es decir, alrededor de la línea Brγ desplazada al azul emitida por una fuente que se aproxima a una velocidad de 2.700 km/s. El fondo de cada píxel espacial ha sido restado del campo de visión. La escala de color es la misma que en los paneles superiores. Derecha: Misma información que el panel de la izquierda pero mostranto únicamente la información que es más del doble de brillante que el nivel de ruido. Créditos: Astrophysical Journal Letters/M. Valencia.

Fascinación ante lo observado

"Estar en el telescopio y ver los datos en tiempo real fue una experiencia fascinante", afirma Florian Peissker, estudiante de doctorado de la Universidad de Colonia (Alemania) que hizo gran parte de las observaciones. "Fue sorprendente ver que el resplandor de la nube de polvo permaneció compacto antes y después de la aproximación al agujero negro", comenta Mónica Valencia-S., investigadora post-doctoral también en la Universidad de Colonia, y que entonces trabajaba procesando los datos.

"Hemos estudiado todos los datos recientes y, en particular, el período del año 2014 en el que se produjo la mayor aproximación al agujero negro. No podemos confirmar ningún tipo de estiramiento significativo de la fuente. Sin duda, no se comporta como una nube de polvo sin núcleo. Creemos que debe ser una estrella joven envuelta en polvo", concluye a modo de resumen Eckart, revelando así el inesperado comportamiento de un objeto en las proximidades de un agujero negro súpermasivo.
Este trabajo se ha publicado en la revista Astrophysical Journal Letters bajo el título “Monitoring the Dusty S-Cluster Object (DSO/G2) on its Orbit towards the Galactic Center Black Hole” por M. Valencia-S. et al.

El equipo que ha llevado a cabo la investigación está formado por M. Valencia-S. (Physikalisches Institut der Universität zu Köln, Alemania), A. Eckart (Physikalisches Institut der Universität zu Köln, Alemania; Max-Planck-Institut für Radioastronomie, Alemania), M. Zajacek (Physikalisches Institut der Universität zu Köln, Alemania; Max-Planck-Institut für Radioastronomie, Alemania;  Astronomical Institute of the Academy of Sciences, República Checa), F. Peissker (Physikalisches Institut der Universität zu Köln, Alemania), M. Parsa (Physikalisches Institut der Universität zu Köln, Alemania), N. Grosso (Observatoire Astronomique de Strasbourg, Francia), E. Mossoux (Observatoire Astronomique de Strasbourg, Francia), D. Porquet (Observatoire Astronomique de Strasbourg, Francia), B. Jalali (Physikalisches Institut der Universität zu Köln, Alemania), V. Karas (Astronomical Institute of the Academy of Sciences, República Checa), S. Yazici (Physikalisches Institut der Universität zu Köln, Alemania), B. Shahzamanian (Physikalisches Institut der Universität zu Köln, Alemania), N. Sabha (Physikalisches Institut der Universität zu Köln, Alemania), R. Saalfeld (Physikalisches Institut der Universität zu Köln, Alemania), S. Smajic (Physikalisches Institut der Universität zu Köln, Alemania), R. Grellmann (Physikalisches Institut der Universität zu Köln, Alemania), L. Moser (Physikalisches Institut der Universität zu Köln, Alemania), M. Horrobin (Physikalisches Institut der Universität zu Köln, Alemania), A. Borkar (Physikalisches Institut der Universität zu Köln, Alemania), M. García-Marín (Physikalisches Institut der Universität zu Köln, Alemania), M. Dovciak (Astronomical Institute of the Academy of Sciences, República Checa), D. Kunneriath (Astronomical Institute of the Academy of Sciences, República Checa), G. D. Karssen (Physikalisches Institut der Universität zu Köln, Alemania), M. Bursa (Astronomical Institute of the Academy of Sciences, República Checa), C. Straubmeier (Physikalisches Institut der Universität zu Köln, Alemania) and H. Bushouse (Space Telescope Science Institute, Estados Unidos).
La imagen 2 es una composición de imágenes obtenidas con el instrumento NACO del VLT en los siguientes filtros:
- Filtro Infrarrojo en banda K (2,18 um)
- Filtro Infrarrojo en banda H (1,66 um)
- Filtro Infrarrojo en banda I (1,27 um)
¿Te interesa? Sígueme también en Twitter.

National Geographic Oferta